Hidrogeologi #2

6 05 2010

Kualitas Airtanah (Pulau Kecil)

Kualitas airtanah di alam dapat berupa airtanah dangkal dan airtanah dalam (Rozi, 1995). Airtanah dangkal berada pada kedalaman di bawah 20 meter, sumber inilah yang banyak dimanfaatkan oleh masyarakat sebagai sumber air bersih.

Kualitas airtanah dangkal menurut Rozi (1995) sangat dipengaruhi oleh kondisi lingkungan disekitarnya, antara lain :

  1. Bila jarak antara sumur dan septik tank kurang dari 10 meter untuk tanah biasa dan 15 meter untuk tanah porous atau gembur.
  2. Bila lokasi sumur tersebut sebelumnya merupakan lokasi sumber limbah rumah tangga, dekat pembuangan limbah industri atau bekas lokasi sampah (TPA).
  3. Masuknya atau merembesnya air permukaan yang telah tercemar kedalam sumur.
  4. Masuknya debu atau bahan pencemar lainnya kedalam sumur terbuka atau yang terbawa pada saat hujan.

Untuk airtanah di pulau kecil yang berbatasan dengan laut, Saefudin (2000) mengungkapkan bahwa kualitasnya akan dipengaruhi oleh kontak air tawar dari daratan dengan air asin dari lautan. Indikator yang dapat dipakai secara cepat terutama dilapangan ialah besarnya Daya Hantar Listrik (DHL) dimana pengukuran dilakukan secara ”insitu” menggunakan alat portable EC meter. Makin tawar air makin sedikit ion yang terlarut, sehingga makin rendah kualitas air dari segi estetika, yaitu rasa asin.

Komite bersama antara LIPI, DPMA, GTL dan Departemen PU membuat panitia Ad Hoc Intrusi Air Asin (Sihwanto, 1990 dalam Saefudin, 2000) telah berhasil membuat kriteria air berdasarkan DHL, kandungan Cl-, dan TDS sebagai berikut :

Tabel 1. Klasifikasi tingkat keasinan airtanah (Sihwanto, 1990 dalam Saefudin, 2000).

Kualitas TDS (mg/l) DHL (mmho/cm) Cl- (mg/l)
Tawar < 1000 < 1500 < 500
Agak Payau > 1000 – < 3000 > 1500 – <5000 > 500 – < 2000
Payau > 3000 – <10000 > 5000 – < 15000 > 2000 – < 5000
Asin > 10000 – < 35000 > 15000 – < 50000 > 5000 – < 19000
Brine > 35000 > 50000 > 19000

Tabel 2. Klasifikasi air berdasarkan DHL (Mandel, 1981 dalam Syahwan, 2007)

DHL (mmho/cm) pada Suhu 250 C Macam Air
< 0,5 Air murni
0,5 – 5 Air suling
5 – 30 Air hujan
30 – 2000 Airtanah
35000 – 45000 Air laut
> 100000 Air garam

Tabel 3. Klasifikasi  air berdasarkan jumlah garam terlarut (Davis dan De wiest dalam Syahwan, 2007)

DHL (mmho/cm) pada Suhu 250 C Macam Air
< 0,5 Air murni
0,5 – 5 Air suling
5 – 30 Air hujan
30 – 2000 Airtanah
35000 – 45000 Air laut
> 100000 Air garam

Menurut Saefudin (2000), karena letaknya yang sebagian besar berbatasan dengan laut, maka keadaan airtanah di pulau kecil akan tergantung kepada kondisi air tawar di darat berupa aliran airtanah serta besarnya gradien hidrolik dan tekanan air asin dari laut yang berkaitan dengan pasang-surut. Masih menurut Saefudin (2000), ada dua fenomena yang berpengaruh terhadap penurunan kualitas airtanah di pulau kecil yaitu terjadinya penyusupan air laut (salt water intrusion), dan gangguan air laut (salt water encroachment).

Menurut Fetter (1994) dalam Saefudin (2000), sumber air asin yang dapat menyusup kedalam airtawar atau terjadinya air asin di daerah pantai bisa berupa air tertekan yang sudah ada sejak jaman purba (connate water), air di batas pertemuan air laut dan tawar (mixing zone), air permukaan dari laut yang menyusup melalui sungai atau saluran air sampai jauh ke arah darat saat pasang naik airlaut, atau air asin bawah permukaan di bawah air tawar (sub-surface salt water).

Fetter (1994) dalam Saefudin (2000) juga menyebutkan bahwa kualitas airtanah di pulau kecil akhirnya akan tergantung kepada kekuatannya apakah akan terjadi pencucian air asin oleh air tawar (flushing) sehingga kualitasnya menjadi lebih baik ataukah sebaliknya terjadi penyusupan air asin ke dalam air tawar ke arah daratan sehingga kualitas airtanahnya menjadi lebih buruk.

Adanya pengaruh air asin terhadap air tawar, selain dapat dilihat dari nilai DHL, bisa juga secara lebih rinci dilihat dari kandungan ion – ion utama dalam air. Secara umum air tawar termasuk tipe Ca-HCO3 yang intinya mempunyai ion dominan kalsium dan bikarbonat, sedangkan air laut mempunyai tipe Na-Cl artinya didominasi oleh ion natrium dan klorida. Diantara kedua tipe tadi bisa terdapat tipe Ca-Cl atau Na-HCO­­3, disamping tipe lain yang dipengaruhi oleh kejadian setempat misalnya adanya sulfat di daerah bekas rawa. Karena proses pertukaran ion, apabila terjadi pencucian air asin oleh air tawar maka akan muncul air dengan tipe Na-HCO­3, sebaliknya apabila terjadi gangguan atau penyusupan air laut akan terjadi tipe Ca-Cl (Appello, 1991 dalam dalam Saefudin, 2000).

Sumberdaya airtanah di pulau kecil dapat mengalami pencucian (flushing) oleh air tawar sebagai imbuhan dari arah daratan sehingga kualitasnya menjadi semakin baik, atau sebaliknya mengalami penurunan kualitas sebagai akibat intrusi oleh air laut (Anonim, 1997 dalam Saefudin, 2000).

Menurut Falkland (1990) pengelolaan kualitas air di pulau kecil memiliki kealamian yang terfokus dalam area dekat pantai seperti muara, teluk, dan lagoon. Area ini memiliki populasi tinggi dan ekologi yang sensitif. Penggangguan airlaut merupakan masalah serius dan paling utama untuk mutu/kualitas airtanah di pulau kecil. Tidak dapat dipungkiri bahwasanya pulau kecil sebagian besar wilayahnya merupakan wilayah pesisir.

Selain penggangguan dari airlaut, penggangguan lain dapat berasal dari polusi sumur – sumur dan sungai – sungai yang ada. Polusi ini disebabkan karena tidak terkontrolnya penggunaan pupuk herbisida, dan pestisida. Hal ini terutama sekali mudah terjadi pada wilayah formasi batukarang.

Masih menurut Falkland (1990) pulau kecil pada daerah tropis atau lembab disaat hujan lebat dikombinasikan dengan faktor lokal seperti topografi yang curam, saluran air sungai yang pendek, penebangan hutan, dan tanah yang mudah terkikis akan mengakibatkan pengendapan pada tempat penyimpanan air (water storages) sehingga kapasitas atau daya tampungnya berkurang.

Oleh karena itu untuk pemenuhan kebutuhan akan air di pulau kecil dengan kualitas yang cukup baik, diperlukan pengembangan sumber daya air  tidak konvensional seperti desalinisasi air laut, atau impor air dengan tongkang dan tangki/tank mencukupi permintaan untuk air.





Hidrogeologi #1

6 05 2010

Cekungan Airtanah Yogyakarta

Cekungan airtanah Yogyakarta berada di bagian selatan lereng Gunungapi Merapi yang dibatasi oleh dua sungai utama yaitu Sungai Opak di bagian timur dan Sungai Progo di bagian barat. Di bagian selatan cekungan ini dibatasi oleh Samudera Hindia. Secara morfologis rangkaian perbukitan Kulon Progo di bagian barat laut dan rangkaian Perbukitan Baturagung di bagian tenggara juga membatasi cekungan Yogyakarta. Secara geologis, cekungan Yogyakarta dibatasi oleh sesar utama yaitu, sesar sepanjang Kali Opak di bagian timur dan sepanjang Kali Progo di bagian barat. Selain itu, di dalam cekungan Yogyakarta terdapat juga beberapa sesar turun yang berpasangan, antara lain yang membentuk Graben Bantul dan Graben Yogyakarta (Sir M. Mac Donald and Partner, 1984).

Sistem hidrogeologi yang dibentuk oleh Formasi Yogyakarta dan Formasi Sleman dalam cekungan Yogyakarta membentuk tatanan akuifer yang disebut Sistem Akuifer Merapi (SAM). SAM secara hidrologis membentuk satu sistem akuifer, terdiri atas akuifer berlapis banyak (multilayer aquifer) yang memiliki sifat-sifat hidrolika relatif sama dan saling berhubungan antara satu dengan yang lainnya.

Secara umum, air bawah tanah mengalir dari utara ke selatan dengan landaian hidrolika yang secara bergradrasi semakin kecil. Morfologi air bawah tanah menyerupai bentuk kerucut dan menyebar secara radial. Bentuk ini merupakan ciri khas morfologi air bawah tanah daerah gunungapi. Daerah imbuhan (recharge area) berada di bagian lereng atau tubuh gunungapi. Air bawah tanah berasal dari peresapan air hujan dan secara tidak langsung juga dari peresapan air sungai dan air irigasi di daerah pertanian. Daerah pelepasan (discharge area) berada mulai sekitar Saluran Mataram sampai daerah Bantul selatan. Di daerah selatan, air bawah tanah pada Formasi Sleman memiliki energi potensial yang relatif besar dan mengalir pada litologi yang memiliki sifat fisik relatif sama dengan Formasi Yogyakarta sehingga terjadi aliran bawah tanah secara vertikal dari Formasi Sleman ke Formasi Yogyakarta.

Ketebalan SAM sangat beragam, secara umum ketebalannya bertambah besar kea rah selatan. Di daerah Graben Yogyakarta, yaitu daerah Ngaglik, ketebalan SAM mencapai 80 meter, di daerah Bedog dan Karanggayam sekitar 140 meter, dan di daerah Kota Yogyakarta mencapai 150 meter. Ketebalan ini berkurang kembali di luar Graben Yogyakarta yatu sekitar 45 meter di selatan Yogyakarta. Di daerah Graben Bantul yaitu di sekitar Kota Bantul ketebaln SAM meningkat kembali menjadi 125 meter.

Litologi utama penyusun Cekungan Yogyakarta adalah Formasi Yogyakarta di bagian atas dan Formasi Sleman di bagian bawahnya yang merupakan endapan volkaniklastik dari Gunung Merapi.





2nd English Sector

2 04 2010

The Most Dangerous Disasters in Indonesia

Introduction

Disaster, bad enough or no is always identical with a serious bad situation. Disasters are events that threaten and disrupt community life caused by natural factors or unnatural factors and human factors that lead to the emergence of the human casualties, environmental damage, property loss, and psychological impact (http://en.wikipedia.org/wiki/Disaster). In this case, the disaster meant here is a natural disaster. A natural disaster is a physical event that occurs due to natural events like earthquakes, volcanic eruptions and landslides. Humans can’t manage an emergency situation so that a human loses of property and infrastructure, even until death. Losses due to natural disasters depend on the ability of humans to prevent or avoid disasters. Many natural disasters that occur in Indonesia because the position of Indonesia is very complex based on the point of view of geologist. Disasters that occur in Indonesia are something like earthquakes, tsunamis, volcano eruption, landslide, floods, storms, forest fires, etc. From various kinds of natural disasters, earthquakes, volcano eruptions, and landslides are dangerous disasters that often happen in Indonesia.

There are many reasons that earthquake, volcanic eruption, and landslide are dangerous disasters that often happened in Indonesia.

I. Indonesia Has a Rock Basement That Always Moves Every Year

Earth is made up of several layers of rock. The outermost layer of rock is the crust. The crust is divided into several sections and then the crust moves known as plate tectonic movement. Plate tectonics is each plate move or less independently and grinds against the others, concentrating most deformation, volcanism, and seismic activity along the periphery (Parker, 1984). On the other hand, plate tectonics is a scientific theory which describes the large scale motions of Earth’s lithosphere (http://en.wikipedia.org/wiki/Plate_tectonic).

Plate tectonic is called a plate because the thickness reaches only about 100 kilometers while the length can reach thousands of kilometers. On earth there are seven major tectonic plates and several small tectonic plates. They move relative into each other at plate boundaries, divergent (spreading), convergent (collision), or transform. Earthquakes, volcanic activity, mountain formation, and oceanic trench formation generally occurs in areas along plate boundaries.

A. the Area is Among Three Plate Tectonics

In Indonesia there are also large tectonic plates that cause the rock basically to move every year. This is because Indonesia becomes an archipelagic state. Plate tectonics is located along the southern coast of Sumatra Island, the southern coast of Java Island, the southern coast of Bali Island, the southern coast of Southeast Nusa Island, and West Papua Island also the eastern of Sulawesi Island. Tectonic plates that move in the territory of Indonesia, namely: Eurasian plate, Indo-Australian plate, and Pacific plate.

-                        Eurasian plate

The Eurasian Plate is a tectonic plate which includes most of the continent of Eurasia (a landmass consisting of the traditional continents of Europe and Asia), with the notable exceptions of the Indian subcontinent, the Arabian subcontinent, and the area east of the Chersky Range in East Siberia (http://en.wikipedia.org/wiki/Eurasian_plate)

-                        Indo-Australian plate

The Indo-Australian Plate is a major tectonic plate that includes the continent of Australia and surrounding ocean, and extends northwest to include the Indian subcontinent and adjacent waters (http://en.wikipedia.org/wiki/Indo-Australian_Plate).

-                        Pacific plate

The Pacific Plate is an oceanic tectonic plate beneath the Pacific Ocean (http://en.wikipedia.org/wiki/Pacific_plate). In the other hand, the Pacific Plate is a continental margin typified by that of the western Pacific where oceanic lithosphere descends beneath an adjacent continent and produces an intervening island arc system (Parker, 1984).

B. the Area is on Subduction Zone

Each tectonic plates moves relative to each other to achieve a dynamic balance. The meeting of tectonic plates is called a subduction zone. Result from collisions between tectonic plates is an earthquake which is referred to as tectonic earthquakes. This is the answer to the question of why earthquakes frequently occur in Indonesia.

In geology, subduction is the process that takes place at convergent boundaries by which one tectonic plate moves under another tectonic plate, sinking into the Earth’s mantle, as the plates converge (http://en.wikipedia.org/wiki/Subduction). According to Parker (1984), subduction is the process by which one crustal block descends beneath another, such as the descent of the Pacific plate beneath the Eurasian plate along the Sumatra Trench. A subduction zone is an area on Earth where two tectonic plates move towards one another and subduction occurs (http://en.wikipedia.org/wiki/Subduction). Still according to wikipedia.com, rates of subduction are typically measured in centimeters per year, with the average rate of convergence being approximately 2 to 8 centimeters per year (about the rate a fingernail grows).

II. Indonesia Has a Volcanic Arc from West until East

In the territory of Indonesia there are many volcanoes ranging from Aceh on the Sumatra Island to the west of the Papua Island. This is known as volcanic arc. This is the reason that volcanic eruptions are dangerous disasters that often happened in Indonesia.

A. Melting of Rock Basement Because of Subduction Process

Many volcanoes in Indonesia are due to subduction processes that occur in the basement rocks of Indonesian territory. Because the subduction process is thaw the bedrock so that the molten rock rose into the surface and form volcano morphology on the surface of the earth. This is evidenced by the formation of a volcanic arc relatively parallel to the subduction zone.

B. Magmatic Activity

Magmatic activity is the movement of magma within the bowels of the earth because of pressure differences and temperature differences.

As a result of magma movement is could be an earthquake and it called volcanic earthquakes. Then if the movement of magma is very large and able to reach the surface there will be a volcanic eruption. Magmatic activity is caused by two main things, namely:

-                        Pressure difference

-                        Temperature difference

Conclusion

Natural disasters are a natural phenomenon that cannot be avoided. These phenomena occur in almost any area. Wherever we live, natural disasters will always be around us because we live in nature. Natural disasters are caused by natural disasters on our control or natural disasters beyond our control. Natural disasters may be the changes the earth’s surface, climate change, and various natural phenomena that can lead to other natural disasters. Indonesia is a large country with large natural disasters and non-natural disasters. Either volcanic earthquakes or tectonic earthquakes, landslides or scientifically called mass movements, and volcanic eruptions is natural disasters of the greatest and most often occur in Indonesia and we really need to aware of it.





Geologi Struktur Indonesia

29 03 2010

Evolusi Morfotektonik Zona Rembang

BAB I.  STRATIGRAFI

Mandala Rembang termasuk dalam cekungan Jawa Timur utara. Secara historis penggunaan nama-nama satuan stratigrafis pada zona ini semula hanya digunakan secara terbatas, tak terpublikasikan, pada dilingkungan perusahaan minyak Belanda BPM (Batafsche Petroleum Maatschapij), yaitu pendahulu perusahaan Shell, yang dulu memegang konsesi daerah Cepu. Nama-nama formasi secara resmi baru mulai digunakan oleh Van Bemmelen (1949) dan Stratigraphic Lexicon of Indonesia oleh Marks (1957). Harsono (1983) melakukan perubahan dari nama-nama tak resmi seperti globigerina marl atau Orbitoiden-Kalk dengan memberikan nama yang baru, menetapkan lokasi tipe, sesuai dengan Sandi Stratigrafi Indonesia. Penentuan umur secara teliti dari setiap formasi dengan menggunakan pertolongan fosil foraminifera plangtonik telah dilakukan oleh Harsono (1983).

Zona rembang dimulai dari ujung barat perbukitan di selatan Demak, memanjang ke arah timur dan timur laut memasuki wilayah Jawa Timur, memanjang melewati Pulau Madura, terus ke arah timur hingga ke Pulau Kangean. Arah memanjang perbukitan tersebut mengikuti sumbu-sumbu lipatan, yang pada umumnya berarah barat-timur. Di beberapa tempat sumbu-sumbu ini mengikuti pola en echelon yang menandakan adanya sesar geser lateral kiri (left lateral wrenching faulting).

Bagian utara dari antiklinorium rembang yang mengandung formasi batuan berumur miosen awal, telah mengalami pengangkatan dan erosi. Suatu kelompok antiklin yang terdapat di bagian selatan dikenal sebagai zona rembang tengah dan selatan, juga sering disebut sebagai Cepu Trend. Batuan tertua yang tersingkap di bagian ini berumur miosen akhir, yang kebanyakan mengandung minyak. Batuan yang berfungsi sebagai reservoar hidrokarbon yang utama di daerah rembang adalah batupasir ngrayong (miosen tengah) sedangkan penyumbat atau (seal)nya adalah batulempung wonocolo yang berumur miosen akhir.

Pada zona rembang bagian utara terdapat 2 gunung api pleistosen, yaitu Gunung Muria dan Lasem. Gunung api yang telah padam ini mempunyai komposisi batuan yang lain apabila dibandingkan dengan gunung api yang lain. Komposisinya bukan andesit tetapi berupa batuan beku yang kaya akan leucite (feldspatoid), mirip dengan batuan yang tergolong pada kelompok gunung api mediteranian suite, seperti yang dijumpai di Atlantika.

Zona Rembang terbentang sejajar dengan zona Kendeng dan dipisahkan oleh depresi Randublatung, suatu dataran tinggi terdiri dari antiklinorium yang berarah barat-timur sebagai hasil gejala tektonik Tersier Akhir membentuk perbukitan dengan elevasi yang tidak begitu tinggi, rata-rata kurang dari 500 m. Beberapa antiklin tersebut merupakan pegunungan antiklin yang muda dan belum mengalami erosi lanjut dan nampak sebagai punggungan bukit. Zona Rembang merupakan zona patahan antara paparan karbonat di utara (Laut Jawa) dengan cekungan yang lebih dalam di selatan (cekungan Kendeng). Litologi penyusunnya campuran antara karbonat laut dangkal dengan klastika, serta lempung dan napal laut dalam.

Stratigrafi Zona Rembang tersusun atas Formasi Ngimbang, F. Kujung, F. Prupuh, F. Tuban, F. Tawun, F. Ngrayong, F. Bulu, F. Wonocolo, F. Ledok, F. Mundu, F. Selorejo, dan F. Lidah.

Formasi Kujung

Tersusun oleh serpih dengan sisipan lempung dan secara setempat berupa batugamping baik klastik maupun terumbu. Diendapkan pada lingkungan laut dalam sampai dangkal pada kala Oligosen Akhir sampai Miosen Awal.

Formasi Tuban

Tersusun oleh lapisan batulempung dengan sisipan batugamping. Semakin ke selatan berubah menjadi fasies serpih dan batulempung (Soejono, 1981, dalam Panduan Fieldtrip GMB 2006). Diendapkan pada lingkungan neritik sedang-neritik dalam.

Formasi Tawun

Tersusun oleh serpih lanauan dengan sisipan batugamping. Pada bagian atas formasi ini didominasi oleh batupasir yang terkadang lempungan dan secara setempat terdapat batugamping. Satuan di bagian atas ini sering disebut sebagai Anggota Ngrayong. Diendapkan pada laut terbuka agak dalam sampai laut dangkal di bagian atas pada Miosen Tengah (N9-N13) (Rahardjo & Wiyono, 1993, dalam Panduan Fieldtrip GMB 2006).

Formasi Tawun dimasa lalu disebut sebagai Lower Orbitoiden-Kalk (Lower OK) dan dimasukkan dalam apa yang disebut Rembang beds (Van Bemmelen, 1949). Selanjutnya Koesoemadinata (1978) menamakannya sebagai Anggota Tawun dari Formasi Tuban. Pada tahun 1983, Harsono menaikkan status anggota ini menjadi Formasi (tabel III.1). Menurut Harsono Formasi Tawun ini tersusun oleh perselingan antara gypsiferous carbonaceous shale dengan struktur gelembur arus, serta batugamping yang kaya akan foraminifera besar golongan Orbitoidae seperi Lepidocyclina. Singkapan yang dijumpai merupakan bagian teratas dari Formasi ini, tersusun oleh batulempung abu-abu kehijauan dengan sisipan batugamping dan batupasir. Didaerah sekitar desa Ngampel terdapat singkapan dari Formasi ini setebal 30 m. Perlapisannya mengandung fosil foraminifera plangtonik yang menunjukkan umur N 8 (Akhir Miosen Awal) berupa kumpulan spesies : Globigerinoides diminutus, Pareorbulina transtoria dan Globigerinoides sicanus. Sedangkan kandungan foraminifera bentoniknya menunjukkan bahwa Formasi ini diendapkan pada kondisi laut sangat dangkal pada kondisi penguapan yang sangat tinggi. Ke arah atas litologi ini ditumpuki oleh batupasir merah hingga merah jambu, dengan gejala struktur silang siur yang menjadi ciri dari batupasir Ngrayong.

Formasi Ngrayong

Anggota ini juga disebut “Upper Orbitoiden-Kalak” oleh Trooster (1937), Van Bemmelen (1949) menamakan Upper Rembang beds. Nama batupasir anggota Ngrayong telah diperkenalkan Brouwer (1957), yang mengajukan tipe local pada desa Ngrayong, Jatirogo, dimana susunan utamanya batupasir dengan intercalation batubara dan sandy clay.

Harsono (1983), mendeskripsi Ngrayong sebagai anggota formasi Tawun, terdiri dari orbitoid limestone dan shale dalam bagian bawah dan batupasir dengan intercalation batugamping dan lignit di bagian atas. Umur dari unit ini Miosen Tengah, pada area N9-N12. Lingkungan pengendapan dari anggota ini fluvial atau submarine dalam singkapan di sebelah utara (Jatirogo, Tawun) dan menjadi lingkungan laut pada bagian selatan. Di dekat Ngampel sekuen pasir endapan laut yang mendangkal ke atas dari shore face ke pantai akan terlihat anggota ini mungkin berhubungan dengan haitus di atas area mulut laut jawa. Anggota ini merupakan reservoar utama dari lapangan minyak Cepu, tetapi terlihat adanya shale yang hadir di bagian selatan dan timur dari lapangan ini. Ketebalan dari unit ini bervarian (lebih dari 300 m).

Formasi Bulu

Semula formasi ini disebut sebagai Platen–Complex oleh Trooster (1937). Tersusun oleh batugamping pasiran yang keras, berlapis baik, berwarna putih abu-abu, dengan sisipan napal pasiran. Pada batugampingnya dijumpai banyak foraminifera yang berukuran sangat besar dari spesies Cycloclypeus (Katacycloclypeus) annulatus berasosiasi dengan fragmen koral dan alga serta foramnifera kecil. Harsono (1983) menggunakan nama Formasi Bulu sebagai nama Resmi, dengan memasang lokasi tipe di Sungai Besek, dekat desa Bulu, Kabupaten Rembang. Posisi stratigrafi, umur dan litologinya dapat dilihat pada tabel III.1.

Pada peta geologi lembar Rembang (1 : 100.000), formasi ini melampar luas terutama di wilayah antiklonorium Rembang Utara. Satuan ini menebal ke arah barat, mencapai ketebalan hingga 360 m di sungai Larangan. Dibagian timur di sungai Besek dekat desa Bulu ketebalannya hanya 80 meter. Kondisi litologi dan kandungan fosilnya menunjukkan bahwa Formasi ini diendapkan pada laut dangkal, terbuka pada Kala Miosen Tengah – Awal Miosen Akhir (N 13 – N 15).

Formasi Wonocolo

Tersusun dari napal kuning-coklat, mengandung glaukonit, terdapat sisipan kalkarenit dan batulempung. Menurut Purwati (1987, dalam Panduan Fieldtrip GMB 2006) lingkungan pengendapan formasi ini adalah neritik dalam hingga bathyal tengah pada Miosen Tengah-Miosen Atas (N14-N16).

Formasi Wonocolo semula disebut sebagai anggota bawah dari Formasi Globigerina oleh Trooster (1937). Formasi ini menumpang secara selaras di atas formasi bulu dan ditumpangi oleh Formasi Ledok. Pada umumnya tersusun oleh napal dan napal lempungan yang tidak berlapis, kaya akan kandungan foraminifera plangtonik. Pada bagian bawahnya dijumpai sisipan batugamping pasiran dan batupasir gampingan dengan ketebalan bervariasi antara 5–20 cm. Urutan ini menunjukkan bahwa selama pengendapannya terjadi kondisi transgresif. Marks (1957) dan Harsono (1983) menyimpulkan bahwa umur dari formasi ini adalah Miosen Tengah – Miosen Akhir kisaran umur N 14 – N 16. (lihat tabel III.1).

Singkapan dari Formasi Wonocolo dijumpai mulai dari daerah Sukolilo, barat daya Pati. Ketebalan dari Formasi ini sangat bervariasi. Ke arah utara formasi ini berubah fasies menjadi batugamping dari Formasi Paciran. Melimpahnya fauna plangtonik pada batuan penyusun formasi ini menunjukkan bahwa pengendapannya berlangsung pada laut yang relatif dalam, wilayah ambang luar hingga batial atas.

Formasi Ledok

Secara selaras di atas Formasi Wonocolo terdapat Formasi Ledok. Trooster (1937) menganggap satuan ini sebagai anggota dari Formasi Globigerina, namun para peneliti sesudahnya menganggap berstatus formasi (Marks, 1957; Harsono, 1983).  Formasi Ledok secara umum tersusun oleh batupasir glaukonitan dengan sisipan kalkarenit yang berlapis bagus serta batulempung yang berumur Miosen Akhir (N 16–N 17). Posisi stratigrafi, umur dan litologinya dapat dilihat pada tabel III.1.

Ketebalan dari Formasi Ledok ini sangat bervariasi. Pada lokasi tipenya, yaitu daerah antiklin Ledok, ketebalannya mencapai 230 m. Di daerah sungai Panowan mencapai 160 m, sedangkan di sungai Cegrok tinggal 50 m. Batupasirnya kaya akan kandungan glaukonit dengan kenampakan struktur silang siur. Di beberapa tempat batupasir tersebut terutama tersusun oleh hanya oleh test foraminifera plangtonik dengan sedikit mineral kuarsa. Secara keseluruhan bagian bawah dari formasi ini cenderung tersusun oleh batuan yang berbutir lebih halus dari bagian atas, menunjukkan kecendrungan kondisi pengendapan laut yang semakin mendangkal (shallowing-upward sequence). Ke arah utara, seperti halnya Formasi Wonocolo, Formasi Ledok ini juga mengalami perubahan fasies menjadi batugamping dari formasi Paciran.

Formasi Mundu

Satuan stratigrafi ini semula disebut sebagai Mundu stage oleh Trosster (1937). Selanjutnya oleh Van Bemmelen (1949) disebut sebagai Globigerina Marls. Oleh Marks (1957) satuan ini diresmikan sebagai Formasi. Formasi ini tersusun oleh napal masif berwarna putih abu-abu, kaya akan fosil foraminifera plangtonik. Secara stratigrafis Formasi Mundu terletak tidak selaras di atas formasi ledok, penyebarannya luas, dengan ketebalan 200 m–300 m di daerah antiklin Cepu area, ke arah selatan menebal menjadi sekitar 700 m. Formasi ini terbentuk antara Miosen Akhir hingga Pliosen (N 17–N 21), pada lingkungan laut dalam (bathyial).

Formasi Selorejo

Unit ini pembentukannya disebut Selorejo Beds oleh Trooster, 1937, yang telah diklasifikasikan sebagai anggota dair Formasi Lidah oleh Udin Adinegoro (1972) dan Koesoemadinata (1978). Sejak Harsono (1983) tidak melakukan pengamatan ketidakselarasan antara Formasi Lidah dan Mundu. Dia memasukkan anggota Selorejo dalam Formasi Mundu. Tipe lokalnya dari Desa Selorejo dekat Cepu dan terdiri lebih keras dan lebih lunak antar lapisan, menyisakan kebanyakan glaukonit. Dari foraminifera dianggap lingkungan laut dalam.

Satuan batuan ini semula oleh Trooster (1937) disebut sebagai Selorejo beds. Selanjutnya Udin Adinegoro (1972) dan Koesoemadinata (1978) menyebutnya sebagai anggota dari Formasi Lidah. Harsono (1983) menyimpulkan bahwa Selorejo ini merupakan anggota dari Formasi Mundu. Lokasi tipenya terletak di desa Selorejo dekat kota Cepu. Anggota Selorejo ini tersusun oleh perselingan antara batugamping keras dan lunak, kaya akan foraminifera palngtonik serta mineral glaukonit.

Penyebaran dari Anggota Selorejo ini tidak terlalu luas, terutama meliputi daerah sekitar Blora, sebelah utara Cepu (desa Gadu) dan di selatan Pati. Ketebalannya berkisar antara 0 hingga 100 meter. Berdasarkan kandungan foraminifera palngtonik, umur dari Anggota Selorejo adalah Pliosen ( N 21).

Formasi Lidah

Formasi ini terdiri atas batulempung kebiruan, napal berlapis dengan sisipan batupasir dengan lensa-lensa coquina. Dahulu Trooster (1937) menyebutnya sebagai Mergetton, yang terbagi menjadi dua bagian, yaitu Tambakromo dan Turi–Domas. Harsono (1983) kemudian meresmikan satuan ini menjadi berstatus formasi, yaitu Formasi Lidah (tabel III.1).

Bagian terbawah dari formasi ini diduga merupakan endapan neritik tengah hingga neritik luar, yang tercirikan oleh banyaknya fauna plangtonik tetapi masih mengandung foraminifera bentonik yang mencirikan air relatif dangkal seperti pseudorotalia sp. dan Asterorotalia sp. Ke arah atas, terjadi urutan yang mendangkal ke atas (shallowing upward sequence), yang dicirikan oleh lapisan-lapisan yang kaya akan moluska.

I.1.7 Formasi Paciran

Satuan ini semula oleh Van Bemmelen (1949) disebut sebagai Karren Limestone. Secara umum penyusunnya terdiri atas batugamping pejal, dengan permukaan singkapan-singkapannya mengalami erosi membentuk apa yang disebut sebagai karren surface. Harsono (1983) secara resmi menggunakan nama Paciran dan menempatkannya pada status formasi, dengan lokasi tipenya berada di daerah bukit piramid di sekitar Paciran, kabupaten Tuban. Formasi ini dijumpai hanya dibagian utara dari Zona Rembang. Posisi stratigrafi, umur dan litologinya dapat dilihat pada tabel III.1. Umur dari Formasi ini masih memicu terjadinya perbedaan. Harsono (1983) menempatkannya pada Kala Pliosen–Awal Pleistosen, yang secara lateral setara dengan Formasi Mundu dan Lidah. Namun di beberapa tempat terdapat bukti umur yang menunjukkan bahwa Formasi Paciran telah berkembang pada saat pembentukan Formasi Ledok dan Wonocolo.

BAB II STRUKTUR GEOLOGI

Pulau jawa mempunyai dua macam konfigurasi struktur (structural grains) yang berbeda. Di bagian utara tercirikan oleh kecendrungan mengikuti arah timur-barat. Pola timurlaut–baratdaya diduga mengikuti konfigurasi basement. Basement-nya sendiri diduga merupakan bagian dari kerak benua yang berumur Pre Tersier, tersusun oleh mélange, ofiolit dan bagian dari jenis kerak benua lain. Pola struktur yang berarah timur–barat ini sesuai dengan busur volkanik Tersier yang juga berarah timur–barat (Hamilton, 1978). Cekungan Jawa Timur, dimana Kendeng dan Rembang terletak, kemungkinan terletak pada kerak perantara (intermediate crust) dari kelompok mélange yang berangsur berubah menjadi kerak samudra, yang mungkin terdapat pada penghujung timur dari cekungan ini.

Pada bagian barat cekungan Jawa Timur nampak adanya kecendrungan arah morfologi dan struktur timur–barat (gambar IV.1). Hal ini dapat dibandingkan dengan cekungan selatan (Southern Basin). Daratan tersebut mencakup zona Rembang dan Zona Kendeng serta kelanjutannya, yang dibagian utara dibatasi oleh tinggian Kujung-Kangean–Madura–Sepanjang yang terbentuk sebagai akibat sesar geser (wrench related). Ke arah selatan zona ini dibatasi oleh jalur gunung api kuarter. Cekungan ini kemungkinan terbentuk sejak Eosen hingga akhir Oligosen oleh suatu tektonik ekstensional, yang kemudian diikuti oleh fase tektonik inverse sejak awal Miosen hingga Holosen. Pada fase inversi ini dibagian utara dari cekungan ini mengalami pengangkatan (zona Rembang) sedangkan pada bagian selatannya masih berupa cekungan laut dalam (zona Kendeng).

Dalam kerangka tektonik regional maka proses pembentukan struktur Tersier di Pulau Jawa dapat dibagi menjadi 3 periode :

1. Paleogen Extension Rifting
2. Neogen Compressional Wrenching
3. Plio – Pleistocene Compressing Thrust – Folding

Fase ekstensional Paleogene menghasilkan graben / half graben dan sesar-sesar yang mempunyai arah pemanjangan timur–barat. Selanjutnya pada fase kompresi pada Awal Miosen terjadi reaktivasi dari sesar ekstensional yang sebelumnya telah ada, yang menunjukkan adanya kontrol  tektonik terhadap pembentukan awal cekungan.

Periode Neogen Compressional Wrenching ditandai oleh pembentukan sesar-sesar geser, yang terutama terjadi akibat gaya kompresif dari tumbukan lempeng Hindia. Sesar geser yang terjadi membentuk orientasi tertentu, yang berhubungan dengan kompresi utama. Sebagian besar pergeseran sesar merupakan reaktivasi dari sesar-sesar normal yang terbentuk pada periode Paleogen.

Periode Plio – Pleistocene Compressional Thrust – Folding ditandai oleh pembentukan lipatan yang berlanjut pada pembentukan sesar-sesar naik. Antiklinorium dan thrust belt yang terjadi memiliki orientasi tertentu yang berhubungan dengan arah kompresi dan kinematika pembentukannya. Pada zaman Neogen cekungan Jawa Timur bagian utara mengalami rezim kompresi yang menyebabkan reaktivasi sesar-sesar normal tersebut dan menghasilkan sesar-sesar naik.

Pada jaman Pre-Tersier lempeng Jawa Timur mengalami penunjaman dibawah lempeng Sunda, mengkuti arah memanjang zona penunjaman kurang lebih N 600 E, penunjaman ini berakibat pemendekan lempeng pada arah tegaklurus arah penunjaman. Pada saat itu cekungan Jawa Timur barangkali masih berupa cekungan muka busur (fore arc basin). Pada Awal Miosen atau lebih tua, tektonik ekstensi bekerja di zona Rembang. Ekstensi ini kemudian diikuti oleh serangkaian tegasan kompresif yang menjadi aktif sejak Akhir Miosen hingga Holosen dengan arah yang bergeser dari arah timur laut. Kompresi ini juga bekerja pada zona Kendeng sejak Akhir Miosen dan seterusnya. Namun rekaman stratigrafis dari peristiwa ini hanya dapat diamati pada bagian bawah dari Formasi Kerek. Kompresi ini juga menjadi semakin lemah selama pembentukan sedimen yang lebih muda.

BAB III. MORFOTEKTONIK

Evolusi Morfotektonik zona rembang berdasarkan data stratigrafi dan struktur geologinya dapat dibagi menjadi 4 fase:

  1. Fase  Tektonik pertama yang terjadi selama tersier sampai awal Oligocene yang mengendapkan formasi Ngimbang dan Kujung yang diendapkan diatas basement yang berupa mélange dan ofiolit. Formasi Ngimbang yang tersusun oleh batupasir dan batulanau yang terdapat sisipan batugamping mengindikasikan bahwa pengendapannya merupakan syn-rift – post rift sehingga terbentuk cekungan laut dangkal. Cekungan ini mulai stabil pada saat terendapkannya formasi Kujung yang berupa batugamping. Pada fase ini gaya yang bekerja dominannya adalah gaya ekstensional. Cekungan ini berupa fore arc basin
  2. Fase yang kedua terjadi pada oligocen tengah sampai miosen akhir. Pada waktu ini penunjaman lempeng hidia ke pulau Jawa yang oblique. Penunjaman yang oblique ini membentuk struktur lipatan dan sesar yang berarah timur laut – barat daya (pola meratus). Pada fase ini rembang masih berupa fore arc basin dan telah memasuki fase sagging – inverse. Pada waktu inilah terendapkan formasi Prupuh, Tawun, Ngrayong, Bulu, Wonocolo, dan Ledok. Kedudukan muka air laut pada kala ini relative regresi sehingga menyebabkan pola progadasional yang menyebabkan perebahan facies secara lateral kearah darat ke arah utara. Hal ini dibuktikan dengan adanya perubahan facies dari batugamping (formasi Prupuh) ke batupasir, batulempung yang kaya mineral Glaukonit (formasi Ngrayong dan ledok). Batupasir ini kemungkinan diendapkan di lingkungan delta.
  3. Fase yang ketiga terjadi pada Miosen akhir sampai pleistocen awal. Pada fase ini terjadi transgresi air laut yang menyebabkan kenaikan muka air laut secara relative yang mengendapkan formasi Mundu, Paciran, Selorejo, dan Lidah. Pada fase ini rembang masih berupa fore arc basin. Memasuki pengendapan formasi Pacerain dan selorejo terjadi regresi muka air laut sehingga terjadi perubahan lingkungan pengendapan lagi dari laut dalam (bathial) ke laut dangkal (neritik tengah).
  4. Fase yang keempat terjadi pada Pleistocene akhir – Holosen. Pada fase ini penunjaman lempeng Hindia sudah tegak lurus dengan pulau jawa sehingga terbentuklah lipatan, sesar, dan struktur-struktur geologinya lainnya yang berarah timur-barat. Penunjaman ini juga menyebabkan terjadinya partial melting, sehingga terjadi vulkanisme di sebelah selatan zona rembang. Sehingga zona rembang berubah menjadi back arc basin. Vulkanis me ini juga menyebabkan terendapkan batuan batuan gunung api seperti tuff, breksi andesit, aglomerat. Dan juga terjadi intrusi-intrusi andesit. Peristiwa ini menyebabkan zona rembang menjadi daerah yang prospek dalam eksplorasi hidrokarbon. Dimana formasi Ngimbang merupakan source rock yang poetensial. Pematangan source rock ini disebabkan karena naiknya astenosfer yang diakibatkan penunjaman ini. Daerah back arc basin lebih potensial terjadi pematangan source rock daripada fore arc basin. Sedangkan batuan penutup dan reservoir banyak ditemui di formasi Tawun dan Tuban dimana banyak mengandung batulanau-batulempung sedangkan reservoarnya bayak ditemui pada formasi Ngrayong, dan Ledok yang mengendapkan batupasir. Reservoir lainnya yang berupa batugamping juga ditemukan.




Geologi Sejarah

29 03 2010

Perkembangan Organisme Di Bumi Selama Jaman Kapur

PENDAHULUAN

FLORA

Famili dari Araucaricaceae yang sekarang hanya ada di bumi belahan selatan. Terawetkan di Arizona. Diameternya 1,5 meter dan panjangnya mencapai 30 meter. Paku – pakuan yang pertama ada pada Jaman  Jura akhir dan menyebar luas pada Jaman Kapur, sebagaimana telah terfosilkannya dalam bentuk kayu. Sequoias muncul selama Jaman  Jura dan menjadi umum pada Jaman Kapur. (Stokes, 1973).

Kepunahan dan perubahan yang mendadak dalam dunia vegetasi di bumi terjadi pada Jaman Kapur tengah. Awalnya, selama Jaman  Trias dan Jura, tanaman yang paling banyak adalah gymnospermae, atau tanaman tak berbunga. Variasinya antara cycads, dan tanaman paku – pakuan lain. Setelah Jaman Kapur tengah, tanaman yang muncul adalah angiospermae atau tanaman berbunga. Tanaman ini mempunyai struktur bunga dan ada sel telur. Angiospermae ini dibagi menjadi 2 kelompok, yaitu dikotil dan monokotil. Dikotil merupakan tanaman berakar serabut dan dengan tulang daun yang bercabang. Jenisnya seperti pohon. Monokotil merupakan tanaman berakar tunggal dengan tulang daun yang sejajar. Tanamannya seperti rumput, palem, bunga lili, dan anggrek. Diperkirakan ada sekitar 175.000 spesies tanaman berbunga yang hidup. Sedikitnya, 30.000 fosil spesiesnya telah ditemukan. Tanaman ini berbunga pada semua iklim dan termasuk pepohonan.(Stokes, 1973).

Asalmula dari angiospermae merupakan permasalahan yang tak terpecahkan. Umumnya tersebar mendominasi pada Jaman Kapur. Tanaman palem San miguelia, ditemukan pada batuan Jaman  Trias atas dari Colorado barat daya, mempunyai kemungkinan sebagai angiospermae yang paling tua yang pernah ditemukan. Sedangkan jejak dari magnolia, sassafras, fig dan willow umumnya hadir pada batuan Jaman kapur atas. Hutan dari angiospermae ini mendukung pada bentukan dari batubara pada Jaman Kapur. Butiran pollen dari kelompok ini berguna dalam mengetahui keadaan iklim dan sebagai korelasi antara tanaman yang ada.(Stokes, 1973).

Fosil dari kelompok tumbuhan berbunga pada Jaman Kapur sangat mirip dengan spesies pada masa kini. Fosil tersebut adalah adanya daun dari Platanus, pada masa kini adalah genus sycamores. Buahnya mirip dengan genus ficus pada masa kini. Tumbuhan yang sejenis antara lain pohon palem, famili oak, dan famili walnut.(Stanley, 1986).

FAUNA

Pada akhir Jaman Kapur, terdapat dua kelompok besar plangton bersel satu yang ada sejak Jaman Kapur tengah. Keduanya adalah foraminifera globigerinid dan cocolithophore yang memberikan kontribusi besar pada sedimen calcareous di daerah laut. Selama akhir Jaman Kapur, cocolithophore pada lingkungan laut hangat dapat membentuk coccolith. Apabila terakumulasi dalam volume yang besar, maka dapat  menjadi batugamping berukuran butir halus yang umumnya disebut chalk.(Stanley, 1986).

Hewan pelagik yang ada di laut, antara lain Ammonoids dan belemnoids sebagai karnivora berenang yang dominan. Ammonoids sendiri sebagai fosil indeks yang sangat berharga untuk sistem Jaman Kapur. Pada Jaman Kapur ini, hadir ikan teleost. Ciri – cirinya adalah ekor yang simetri, relaif melonjong, gigi yang pendek yang disesuaikan untuk mencari makanan. Ikan di jaman sekarang yang hampir sama antara lain ikan salmon, dan piranha amerika selatan. Ikan Hiu Jaman Kapur mempunyai bentukan yang sama dengan sekarang. Reptil laut yang ada seperti Plesiosaurus yang berkembang pada Jaman Kapur akhir. Ada mossasurus, sebagai hewan laut yang dapat tumbuh memanjang hingga 15 meter. Terdapat fosil yang menunjukkan mossasurus menyerang ammonoids. Ada Hesperornis, sebagai burung penyelam, mempunyai ciri – ciri kaki lebar dan bersayap kecil yang disesuaikan untuk berenang. Kura – kura laut juga ada selama Jaman Kapur ini, sering disebut dengan Archelon.(Stanley, 1986).

Kehidupan di dasar laut, merupakan kelanjutan dari kehidupan pada Jaman Jura. Kebanyakan adalah koral atau heksa koral. Organisme tersebut ada yang masih bertahan hingga masa kini. Beberapa di antaranya foraminifera Alabamina, Anomalinoides, Pleurostomella, Fissoelphidium, dan Siphogeneroides. Bryozoa yang hadir pada umumnya adalah cheilostomes, di antaranya ada Rhiniopora dan Onychocella. Organisme ini berasal dari Jaman Jura, mengalami perkembangan yang pesat pada Jaman Kapur ini. Moluska kelas gastropoda yang muncul adalah Neogastropoda atau „new snails“. Organisme ini memunculkan famili dan genus yang baru. Hewan ini karnivora dengan makanannya berupa cacing, bivalvia, dan snail yang lainnya. Terdapat pula Sea Grass, yang bukan merupakan rumput yang sebenarnya seperti pada era kenozoik, tetapi seperti tanaman berumput yang menyelimuti dasar samudera dan terbentuk selama Jaman Kapur ini. Di antara bivalvia yang hidup di permukaan substratum, terdapat rudist sebagai organisme yang istimewa karena hidupnya seperti koral, pembentuk karang daerah tropis. Pembentuknya berupa heksa koral dan alga coralin. Kehadiran rudist ini dapat mengasumsikan bahwa keadaan yang dominan pada Jaman Kapur berupa pertumbuhan karang di daerah tropis. Hampir semua karang yang berada pada lingkungan shallow didominasi oleh rudist. Pertumbuhannya cepat, seperti koral pembentuk terumbu. Kepunahannya seperti punahnya dinosaurus pada akhir Jaman Kapur.(Stanley, 1986).

Pelecypoda jenis rudist yang membentuk terumbu pada Jaman Kapur berkembang pesat dan menggeser kedudukan koral. Rudist tersebut antara lain Monopleura, Hippurites, dan Durania. Bentuk umum ketiganya hampir sama, yaitu relatis mengkerucut ke arah bawah. (Mintz, 1981 hal.477)

Pada awal Jaman Kapur, keberadaan dari fauna invertebrata tidak banyak diketahui. Tetapi dari fosil yang tersedia, menunjukkan keberlanjutan dari dinosaurus.reptil – reptil ini mempunyai ukuran/bentuk tubuh yang besar, lebih besar dari ukuran manusia. Dinosaurus karnivora yang hadir adalah Albertosaurus dan Tyrannosaurus dari genus Chasmosaurus. Hewan ini tingginya sekitar 4,4 meter. Reptil terbangnya adalah Pterosaurus dari genus Quetzalcoatlus, sedangkan burung air juga ada dengan pembedanya pada sayap keduanya. Terdapat juga buaya dengan panjang sekitar 15 meter. Ular yang hadir merupakan kelompok muda yang primitif. Bila dibangdingkan dengan sekarang, bentukannya seperti phyton. Dinosaurus herbivora yang ada seperti Edmontonia dari genus Corythosaurus. .(Stanley, 1986).

Vertebrata Jaman Kapur yang punya masa depan bagus dalam perkembangannya adalah mamalia, yang berbeda jauh dengan reptil. Ukuran / bentuk tubuhnya kecil. Mamalia pertama adalah jenis marsupial, yang sekarang banyak terapat di Australia seperti kangguru, wombat dan koala. Di Amerika ada Opossum. Kehadiran plasenta berpengaruh terhadap keberadaan mamalia ini. (Stanley, 1986).

KESIMPULAN

Pada Jaman Kapur, Kehidupan di daratan  didominasi Dinosaurus keberadaan tersebar di seluruh daratan di muka bumi. Tanaman berbunga (angiospermae) berkemnbang pesat hingga menggantikan dominasi dari gymnospermae yang merupakan tanaman utama pada Jaman sebelumnya. Pada lantai samudera terdapat cococlith yang nantinya mengendap ,membentuk chalk yang tersebar secara luas. Pada akhir Jaman Kapur, muncul dua kelompok plangton baru yaitu diatom dan foraminifera yang tersebar pada waktu yang bersamaan. Pada pertengahan Jaman Kapur, Ikan Teleost muncul dan berkembang bersama dua kelompok karnivora yang telah ada lebih awal yaitu kepiting dan snail predator. Bivalvia jenis rudist menjadi organisme pembentuk karang/terumbu yang dominan, tetapi organisme ini punah pada akhir Jaman Kapur bersamaan dengan punahnya dinosaurus dan organisme lainnya. (Stanley, 1986).





Endapan Mineral

29 03 2010

Skarn

I. Definisi

Skarn dapat terbentuk selama metamorfisme kontak atau regional. Selain itu juga dari berbagai macam proses metasomatisme yang melibatkan fluida magmatik, metamorfik, meteorik, dan yang berasal dari laut. Skarn dapat ditemukan di permukaan sampai pluton, di sepanjang sesar dan shear zone, di sistem geotermal dangkal, pada dasar lantai samudra maupun pada kerak bagian bawah yang tertutup oleh dataran hasil metamorfisme burial dalam. Skarn dibagi menjadi endoskarn dan eksoskarn dengan didasarkan pada jenis kandungan protolit.

II. Mineralogi

Secara umum, Kuarsa dan kalsit selalu hadir dalam semua jenis skarn. Sedangkan mineral lain hanya hadir pada jenis skarn tertentu seperti talk, serpentine, dan brusit yang hadir hanya pada skarn tipe magnesian.

III. Evolusi skarn

Formasi dari skarn deposit merupakan hasil dari proses yang dinamis. Pada sebagian besar skarn deposit, terdapat beberapa transisi dari metamorfisme distal yang menghasilkan hornfels dan skarnoid ke metamorfisme proximal yang menghasilkan skarn yang mengandung bijih berukuran relatif kasar. Selama gradien suhu yang tinggi dan sirkulasi fluida skala besar akibat intrusi magma, metamorfisme kontak dapat menjadi lebih kompleks dibandingkan model rekristalisasi isokimia yang menyusun metamorfisme regional. Semakin kompleks fluida metasomatisme, akan menghasilkan keterkaitan antara proses metamorfisme yang murni dengan proses metasomatisme.

IV. Zonasi Skarn deposit

Terdapat pola zonasi pada skarn pada umumnya. Pola zonasi ini berupa proximal garnet, distal piroksen, dan idiokras (atau piroksenoid seperti wolastonit, bustamit dan rodonit) yang terdapat pada  kontak antara skarn dan marmer. Selain itu, masing-masing mineral penyusun skarn dapat menunjukan warna yang sistematis atau komposisi yang bervariasi dalam pola zonasi yang lebih luas.

V. Petrogenesis

Sebagian besar skarn deposit secara langsung berhubungan dengan aktivitas pembekuan batuan beku sehingga terdapat hubungan antara komposisi skarn dengan komposisi batuan beku. Karakteristik penting lainnya diantaranya tingkat oksidasi, ukuran, tekstur, kedalaman, maupun seting tektonik dari masing-masing pluton.

Tektonik Setting

Klasifikasi tektonik yang sangat berguna dari deposit skarn seharusnya mengelompokkan tipe skarn yang pada umumnya berada bersama dan membedakannya yang secara khusus terdapat dalam tektonik setting yang khusus. Sebagai contohnya, deposit skarn calcic Fe-Cu sebenarnya hanyalah tipe skarn yang ditemukan dalam wilayah busur kepulauan samudra. Banyak dari skarn ini juga diperkaya oleh Co, Ni, Cr, dan Au. Sebagai tambahan, beberapa skarn yang mengandung emas yang bernilai ekonomis muncul dan telah terbentuk pada back arc basin yang berasosiasi dengan busur volkanik samudra (Ray et al., 1988). Beberapa kenampakan kunci yang menyusun skarn tersebut terpisah dari asosiasinya dengan magma dan kerak yang lebih berkembang adalah yang berasosiasi dengan pluton yang bersifat gabbro dan diorit, endoskarn yang melimpah, metasomatisme yang tersebar luas dan ketidakhadiran Sn dan Pb.

Kebanyakan deposit skarn berasosiasi dengan busur magmatik yang berkaitan dengan subduksi dalam kerak benua. Komposisi pluton berkisar dari diorit sampai granit walaupun pada dasarnya memiliki perbedaan diantara tipe skarn logam yang muncul untuk mencerminkan lingkungan geologi setempat (kedalaman formasi, pola struktural dan fluida) lebih pada perbedaan pokok dari petrogenesis (Nakano,et al., 1990). Sebaliknya, skarn yang mengandung emas pada lingkungan ini berasosiasi dengan pluton yang tereduksi secara khusus yang mungkin mewakili sejarah geologi yang khusus. Beberapa Skarn, tidak berasosiasi dengan subduksi yang berkaitan dengan magmatisme. Pluton yang berkomposisi granit, pada umumnya mengandung muskovit dan biotit primer, megakristal kuarsa berwarna abu-abu gelap, lubang-lubang miarolitik, alterasi tipe greisen, dan anomali radioaktif.  Skarn yang terasosiasi, kaya akan timah dan fluor walaupun induk dari elemen lain biasanya hadir dan mungkin penting secara ekonomis. Perkembangan rangkaian ini termasuk W, Be, B, Li, Bi, Zn, Pb, U, F, dan REE.





4th Stratigraphy Analysis

25 03 2010

Sistem Arus Traksi Struktur Sedimen

I. PENDAHULUAN

Transport dan pengendapan sedimen dari daerah sumber ke daerah pengendapannya tidaklah dikuasai oleh jenis – jenis mekanisme transport tertentu, misal hanya arus traksi saja, dan sebagainya, tetapi selalu merupakan suatu sistem dari berbagai mekanisme, bahkan bukan hanya bersifat mekanis, tetapi juga bersifat kimiawi (Koesoemadinata, 1981). Beberapa sistem transport dan sedimentasi :

  1. 1.      Sistem arus traksi dan suspensi.
  2. 2.      Sistem arus turbid dan pekat (density current).
  3. 3.      Sistem suspensi dan kimiawi.

Cara pengendapannya sendiri menurut Rubey (1935), pertikel mengendap dari suatu aliran berdasarkan dua hukum, yaitu :

  1. Hukum Stokes                        : Berat efektif suatu pola, hal ini berlaku untuk                                  material halus.
  2. Hukum Impact            : Reaksi benturan terhadap medium, hal ini                                        berlaku untuk material kasar.

Dalam kenyataannya tiap – tiap hukum berlaku untuk besar butir tertentu. Lebih kasar besar butir yang dimiliki maka hukum Impact akan berlaku, sedang sebaliknya, makin halus besar butir yang ada maka hukum Stokes yang akan berlaku.

Selain itu juga sifat – sifat transport dan pengendapan lainnya akan mengalami perubahan – perubahan, seperti :

  1. Gerakan partikel/butir.
  2. Konsentrasi sedimen transport.
  3. Kecepatan aliran dekat dasar.
  4. Koefisien kekasaran (maningsin).
  5. Struktur sedimrn yang dibangun.
  6. Kedalaman air.
  7. Sifat permukaan air.
  8. Turbulensi.

II. SISTEM ARUS TRAKSI STRUKTUR SEDIMEN

Sebenarnya sistem ini terdiri dari 2 faktor, yaitu bed load dan suspended load, dimana diendapkan dari sistem tersendiri. Cara pengendapan bed load berhubungan erat dengan pembentukan struktur sedimen dan aliran. Konsep yang ada pada dasarnya delam pelbagai kekuatan arus (stream power) transport sedimen, pengendapan dan bentuk dasar (forms of bed roughness), berubah – ubah dan memiliki karateristik tersendiri. Bentuk dasar juga tergantung dari besar butir, 0,6 mm sebagai batas.

Traksi merupakan salah satu mekanika transportasi dan pengendapan. Mekanika transport dan pengendapan sendiri memuat beberapa bagian, antara lain :

  1. Muatan, yaitu jumlah total sedimen yang diangkut oleh suatu aliran (Gilbert, 1914).
  2. Kapasitas aliran (stream capacity), yaitu muatan maksimal yang dapat diangkut oleh aliran (Gilbert, 1914).
  3. Kompetensi aliran (stream competence), yaitu kemampuan aliran untuk mentransport sedimen dalam pengertian dimensi partikel (Twenhofel, 1950).

Traksi atau gaya gesek kritis juga dipengaruhi oleh hidraulica lift, yaitu pengangkatan yang disebabkan oleh perbedaan tekanan diatas dan dibawah aliran, diukur oleh kecepatan radien dekat dasar aliran.

Berdasarkan cara/gaya mengangkut partikel ini maka transport sedimen secara massal terdapat sebagai berikut (koesoemadinata, 1981) :

  1. Rayapan permukaan (surface creep) : menggelundung.
  2. Saltasi (rolling, skipping) : meloncat dan meluncur.
  3. Suspensi.

Dari segi muatan, maka ini dibagi menjadi :

  1. Bed load (surface creep dan saltasi)
  2. Suspended load (wash load)

III. STRUKTUR SEDIMEN YANG TERBENTUK DARI ARUS TRAKSI

Arus traksi yang berlangsung mengakibatkan terbentuknya struktur sediment. Struktur sediment yang terbentuk sendiri terbagi menjadi dua, yaitu (Koesoemadinata, 1981):

  1. 1.      Rezim aliran bawah (lower flow regim), yaitu gaya tarikan lebih berpengaruh. Hal ini mengakibatkan :
    1. Terbentuk onggokan – onggokan dan scou.r
    2. Cara transport diseret dan jatuh bebas ke dalam scour.
    3. Struktur sedimen sangat ditentukan sebagai akibat dari jatuhan partikel – pertikel kedalam lubang – lubang.
    4. Sudut kemiringan dari cross laminae adalah searah dengan arah arus.
  2. 2.      Rezim aliran tinggi. Hal ini mengakibatkan :
    1. Onggokan – onggokan lebih disebabkan karena penumpukan pada endapan – endapan yang lebih awal.
    2. Cara transport menerus, karena momentum air dan secara massal.
    3. Struktur sedimen acretion terbentuk pada punggung onggokan – onggokan.
    4. Kadang – kadang mengakibatkan terbentuknya :
  • Horizontal stratification (transition)
  • Low angle cross stratification < 100. Sudut kemiringan berbanding terbalik dengan arah arus.
  • Imbricated pebbles

Dalam sistem traksi dan suspensi, maka sedimentasi terjadi dari muatan suspensi dan muatan dasar, berselang – seling atau sering pula dalam kombinasi. Kombinasi pengendapan traksi dan suspensi terutama terjadi di bagian bawah dari lower flow regim.








Follow

Get every new post delivered to your Inbox.